首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2236篇
  免费   379篇
  国内免费   61篇
电工技术   8篇
综合类   31篇
化学工业   1895篇
金属工艺   171篇
机械仪表   14篇
建筑科学   15篇
矿业工程   26篇
能源动力   24篇
轻工业   258篇
水利工程   3篇
石油天然气   55篇
无线电   13篇
一般工业技术   50篇
冶金工业   32篇
原子能技术   11篇
自动化技术   70篇
  2024年   2篇
  2023年   42篇
  2022年   48篇
  2021年   270篇
  2020年   99篇
  2019年   102篇
  2018年   99篇
  2017年   73篇
  2016年   121篇
  2015年   123篇
  2014年   138篇
  2013年   186篇
  2012年   163篇
  2011年   164篇
  2010年   133篇
  2009年   165篇
  2008年   113篇
  2007年   104篇
  2006年   102篇
  2005年   64篇
  2004年   63篇
  2003年   56篇
  2002年   44篇
  2001年   37篇
  2000年   22篇
  1999年   12篇
  1998年   11篇
  1997年   12篇
  1996年   6篇
  1995年   14篇
  1994年   14篇
  1993年   9篇
  1992年   14篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   8篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2676条查询结果,搜索用时 62 毫秒
31.
Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon.  相似文献   
32.
Indoles are privileged structures in medicinal and bioorganic chemistry that are particularly well suited to serve as platforms for diversity. Among many other therapeutic areas, the indole scaffold has been used to design aromatic compounds useful to interfere with enzymes engaged in the regulation of substrate acylation status, such as sirtuins. However, the planarity of the indole ring is not necessarily optimal for all target enzymes, especially when functionalization with aromatic side chains is required. Replacement of flat scaffolds by nonplanar molecular cores dominated by sp3 hybridization is a common strategy to avoid the disadvantages associated with poor solubility and high promiscuity, while covering less-well-explored areas of chemical space. Thus, we synthesized fragment-like tetrahydroindoles suitable for fragment-based drug discovery as well as a well-characterized small library intended as multipurpose screening compounds. For proof of principle, these compounds were screened against sirtuins 1–3, enzymes known to be addressable by indoles. We found that 2,6,6-trimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indole-3-carboxamides are potent and selective SIRT2 inhibitors. Compound 16 t displayed an IC50 value of 0.98 μm and could serve as exquisite starting point for hit-to-lead profiling.  相似文献   
33.
Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions. Here, we summarize current knowledge on how ketogenic interventions support brain metabolism and discuss the therapeutic role of ketones in neurodegenerative disease, emphasizing clinical data.  相似文献   
34.
Potential mGAT4 inhibitors derived from the lead substance (S)-SNAP-5114 have been synthesized and characterized for their inhibitory potency. Variations from the parent compound included the substitution of one of its aromatic 4-methoxy and 4-methoxyphenyl groups, respectively, with a more polar moiety, including a carboxylic acid, alcohol, nitrile, carboxamide, sulfonamide, aldehyde or ketone function, or amino acid partial structures. Furthermore, it was investigated how the substitution of more than one of the aromatic 4-methoxy groups affects the potency and selectivity of the resulting compounds. Among the synthesized test substances (S)-1-{2-[(4-formylphenyl)bis(4-methoxyphenyl)-methoxy]ethyl}piperidine-3-carboxylic acid, that features a carbaldehyde function in place of one of the aromatic 4-methoxy moieties of (S)-SNAP-5114, was found to have a pIC50 value of 5.89±0.07, hence constituting a slightly more potent mGAT4 inhibitor than the parent substance while showing comparable subtype selectivity.  相似文献   
35.
Glucose addiction is observed in cancer and other diseases that are associated with hyperproliferation. The development of compounds that restrict glucose supply and decrease glycolysis has great potential for the development of new therapeutic approaches. Addressing facilitative glucose transporters (GLUTs), which are often upregulated in glucose-dependent cells, is therefore of particular interest. This article reviews a selection of potent, isoform-selective GLUT inhibitors and their biological characterization. Potential therapeutic applications of GLUT inhibitors in oncology and other diseases that are linked to glucose addiction are discussed.  相似文献   
36.
37.
d -Glycero-d -manno-heptose-1β,7-bisphosphate (HBP) and d -glycero-d -manno-heptose-1β-phosphate (H1P) are bacterial metabolites that were recently shown to stimulate inflammatory responses in host cells through the activation of the TIFA-dependent NF-κB pathway. To better understand structure-based activity in relation to this process, a family of nonhydrolyzable phosphonate analogues of HBP and H1P was synthesized. The inflammation modulation by which these molecules induce the TIFA-NF-κB signal axis was evaluated in vivo at a low-nanomolar concentration (6 nM) and compared to that of the natural metabolites. Our data showed that three phosphonate analogues had similar stimulatory activity to HBP, whereas two phosphonates antagonized HBP-induced TIFA-NF-κB signaling. These results open new horizons for the design of pro-inflammatory and innate immune modulators that could be used as vaccine adjuvant.  相似文献   
38.
赵贺 《广州化工》2015,(5):60-61,79
炼油企业的循环水处理主要采用投加阻垢剂、缓蚀剂、杀菌灭藻剂等水质稳定剂来解决系统的腐蚀、结垢和微生物滋生等问题。本文简述了炼油循环水处理系统、循环水处理剂的作用、分类等,概述了国内外循环水处理药剂的现状并对发展方向进行了展望。  相似文献   
39.
Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.  相似文献   
40.
Abstract : A major challenge of targeted cancer therapy is the selection for drug-resistant mutations in tumor cells leading to loss of treatment effectiveness. p97/VCP is central regulator of protein homeostasis and a promising anticancer target because of its vital role in cell growth and survival. One ATP-competitive p97 inhibitor, CB-5083, has entered clinical trials. Selective pressure on HCT116 cells dosed with CB-5083 identified five different resistant mutants. Identification of p97 inhibitors with different mechanisms of action would offer the potential to overcome this class of resistance mutations. Our results demonstrate that two CB-5083 resistant p97 mutants, N660 K and T688 A, were also resistant to several other ATP-competitive p97 inhibitors, whereas inhibition by two allosteric p97 inhibitors NMS-873 and UPCDC-30245 were unaffected by these mutations. We also established a CB-5083 resistant cell line that harbors a new p97 double mutation (D649 A/T688 A). While CB-5083, NMS-873, and UPCDC-30245 all effectively inhibited proliferation of the parental HCT116 cell line, NMS-873 and UPCDC-30245 were 30-fold more potent in inhibiting the CB-5083 resistant D649 A/T688 A double mutant than CB-5083. Our results suggest that allosteric p97 inhibitors are promising alternatives when resistance to ATP-competitive p97 inhibitors arises during anticancer treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号